Abstract

Abstract To understand the dynamics of energy transfer and randomization of photoluminescence polarization in hydrogen-rich polymer-like amorphous carbon a-C:H films, time-resolved investigations of intensity and anisotropy decays have been performed recently. The intensity decay rates increase exponentially as a function of emission energy with a behavior very similar to that observed in wide band-gap C-rich a-Si1–xCx:H. In addition, in polymer-like carbon, the observation of a plateau of PL anisotropy in the 100–1000 ps range, is taken as strong evidence for the existence of a finite density of excitonic species in radiative recombination phenomena; it does not fit the phonon-assisted depolarization models proposed earlier. Polarization anisotropy decays and steady-state values are consistently interpreted using a dipole–dipole non-radiative energy transfer mechanism (Forster mechanism) with a characteristic depolarization time of 50 ps rather independent of the emission energy. The latter value is likely to be related to the density of radiative centers distribution estimated independently in the constant exciton radius approximation, rather than the result of hopping in an exponential distribution of tail states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.