Abstract

Multiple-quantum-well structures based on two crystalline organic semiconductors, namely, 3,4,9,10 perylenetetracarboxylic dianhydride and 3,4,7,8 naphthalenetetracarboxylic dianhydride, have been grown by organic molecular-beam deposition. Both optical-absorption and time-resolved photoluminescence measurements reveal a significant effect on the binding energy and the radiative recombination probability of excitons due to localization of carriers. Variational calculations of the ground-state exciton energy in quantum wells have been done, and the results agree with the experimental data. This provides evidence for exciton confinement in organic quantum-well structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.