Abstract
Evidence suggests that Tourette syndrome is characterized by an increase in dopamine transmission and structural as well as functional changes in fronto-striatal circuits that might lead to enhanced multi-component behaviour integration. Behavioural and neurophysiological data regarding multi-component behaviour was collected from 15 patients with Tourette syndrome (mean age = 30.40 ± 11.10) and 15 healthy controls (27.07 ± 5.44), using the stop-change task. In this task, participants are asked to sometimes withhold responses to a Go stimulus (stop cue) and change hands to respond to an alternative Go stimulus (change cue). Different onset asynchronies between stop and change cues were implemented (0 and 300 ms) in order to vary task difficulty. Tourette patients responded more accurately than healthy controls when there was no delay between stop and change stimulus, while there was no difference in the 300 ms delay condition. This performance advantage was reflected in a smaller P3 event related potential. Enhanced multi-component behaviour in Tourette syndrome is likely based on an enhanced ability to integrate information from multiple sources and translate it into an appropriate response sequence. This may be a consequence of chronic tic control in these patients, or a known fronto-striatal networks hyperconnectivity in Tourette syndrome.
Highlights
Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics[1] and associated with a number of structural and functional changes in fronto-striatal circuits[2,3,4,5]
Regarding the STOP-CHANGE condition, a mixed effects ANOVA with the change conditions as the within-subjects factor [Stop-Change delay (SCD)-0, SCD-300] and group [controls, GTS patients] as the between-subjects factor showed that reactions in the SCD-300 condition (84.78 ± 1.89) were more accurate than reactions in the SCD-0 condition (63.45 ± 1.67) (F(1,28) = 144.43, p < 0.001, ƞp2 = 0.84)
Post-hoc t-tests revealed that GTS patients (67.31 ± 3.12) reacted more accurately in the SCD-0 condition than the healthy control group (59.59 ± 1.22) (t(28) = 2.31, p = 0.03), while GTS patients (83.12 ± 3.13) did not differ from healthy controls (86.45 ± 2.13) in the SCD-300 condition (t(28) = −0.88, p = 0.39)
Summary
Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics[1] and associated with a number of structural and functional changes in fronto-striatal circuits[2,3,4,5]. To examine multi-component behaviour and above-mentioned neurophysiological sub-processes, we used the ‘stop-change task’ (SCT) in GTS patients[6]. This task requires participants to occasionally interrupt (stop) an ongoing response in favor of an alternative response (change). It is hypothesized that GTS patients will show enhanced response selection capacities during multi-component behaviour, especially when the change signal is presented simultaneously with the stop signal. This assumption is based on findings, showing that fronto-striatal mechanisms are important under such circumstances[7, 12, 28]. We hypothesize that the expected group differences are not due to a simple speed-accuracy trade-off but should be based on Tourette specific neural alterations and should be related to symptom severity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.