Abstract

One- to two-thirds of NaCl absorption in the late proximal convoluted tubule (no luminal organic solutes present) is inhibited by cyanide and thus is dependent on active transport. To examine whether this active transport-dependent NaCl transport is electrogenic or electroneutral, the effect of cyanide on transepithelial potential difference (PD) was measured in the rat proximal convoluted tubule microperfused in vivo. In the presence of an ultrafiltrate-like luminal perfusate containing glucose and alanine, cyanide addition caused the transepithelial PD to change from -0.44 +/- 0.04 to -0.05 +/- 0.03 mV (P less than 0.001). In the presence of a late proximal tubular fluid (high chloride, low bicarbonate, no organics), the transepithelial PD was 1.23 +/- 0.06 mV and was unchanged at 1.19 +/- 0.05 mV after cyanide addition (NS). To eliminate the possibility that an effect of cyanide on a putative acidification-dependent lumen-positive PD was concealing an effect on an electrogenic sodium transport-dependent lumen-negative PD, the above studies were repeated in the presence of acetazolamide. Cyanide did not affect the transepithelial PD (1.17 +/- 0.05 vs. 1.07 +/- 0.06 mV, NS). We conclude that, although cyanide-inhibitable NaCl transport is electrogenic in the presence of luminal organic solutes, it does not generate a transepithelial PD in their absence and therefore is electroneutral.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call