Abstract

The Ca2+ indicator photoprotein, aequorin, was used to estimate and monitor intracellular Ca2+ levels in Limulus ventral photoreceptors during procedures designed to affect Na+/Ca2+ exchange. Dark levels of [Ca2+]i were estimated at 0.66 +/- 0.09 microM. Removal of extracellular Na+ caused [Ca2+]i to rise transiently from an estimated 0.5-0.6 microM in a typical cell to approximately 21 microM; [Ca2+]i approached a plateau level in 0-Na+ saline of approximately 5.5 microM; restoration of normal [Na+]o lowered [Ca2+]i to baseline with a time course of 1 log10 unit per 9 s. The apparent rate of Nao+-dependent [Ca2+]i decline decreased with decreasing [Ca2+]i. Reintroduction of Ca2+ to 0-Na+, 0-Ca2+ saline in a typical cell caused a transient rise in [Ca2+]i from an estimated 0.36 microM (or lower) to approximately 16.5 microM. This was followed by a decline in [Ca2+]i approaching a plateau of approximately 5 microM; subsequent removal of Cao2+ caused [Ca2+]i to decline slowly (1 log unit in approximately 110 s). Intracellular injection of Na+ in the absence of extracellular Na+ caused a transient rise in [Ca2+]i in the presence of normal [Ca2+]o; in 0-Ca2+ saline, however, no such rise in [Ca2+]i was detected. Under constant voltage clamp (-80 mV) inward currents were measured after the addition of Nao+ to 0-Na+ 0-Ca2+ saline and outward currents were measured after the addition of Cao2+ to 0-Na+ 0-Ca2+ saline. The results suggest the presence of an electrogenic Na+/Ca2+ exchange process in the plasma membrane of Limulus ventral photoreceptors that can operate in forward (Nao+-dependent Ca2+ extrusion) or reverse (Nai+-dependent Ca2+ influx) directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call