Abstract

We generated fusion proteins consisting of the endothelin-B (ET(B))-receptor and the enhanced green fluorescent protein (EGFP) to visualize receptor internalization. In Madin Darby canine kidney (MDCK) clones expressing ET(B)/EGFP fusion proteins, single class high affinity binding sites for [125I]endothelin-1 (ET-1) were found (for two different clones apparent K(D) values were 31 +/- 15 pM and 30 +/- 7 pM). Pretreatment of membranes with GTPgammaS prior to saturation analysis did not alter these values. We also labelled ET-1 with cyanine-dyes (Cy3/ET-1, Cy5/ET-1). In displacement analyses with membranes of MDCK ET(B)/EGFP clones using [125I]ET-1, we found reduced affinity for Cy3/ET-1 and Cy5/ET-1 (about 5- to 10-fold, respectively), but normal efficacy when compared to unlabelled ET-1. Both fluorescent ligands and the ET(B)/EGFP fusion protein were suitable for analysis of receptor trafficking in living cells and cells fixed at different timepoints. Laser scanning microscopy of MDCK ET(B)/EGFP clones incubated with Cy3/ET-1 or Cy5/ET-1 revealed rapid internalization of ligand/receptor complexes, which clustered in large, perinuclear structures (most probably late endosomes). Our data argue against recycling of the ET(B) receptor and favour its targeting to the lysosomal pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call