Abstract
A unique and unresolved property of the central nervous system is that its extracellular matrix lacks fibrillar elements. In the present report, we show that astrocytes secrete triple helices of fibrillar collagens type I, III and V in culture, while no astroglial collagen expression could be detected in vivo. We discovered two inhibitory mechanisms that could underlie this apparent discrepancy. Thus, we uncover a strong inhibitory effect of meningeal cells on astrocytic collagen expression in coculture assays. Furthermore, we present evidence that EGF-receptor activation downregulates collagen expression in astrocytes via an autocrine loop. These investigations provide a rational framework to explain why the brain is devoid of collagen fibers, which is a unique feature that characterizes the structure of the neural extracellular matrix. Moreover, fibrillar collagens were found transiently upregulated in a laser-induced cortical lesion, suggesting that these could contribute to the glial scar that inhibits axonal regeneration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.