Abstract

Nonphotochemical quenching (NPQ) refers to a process that regulates photosynthetic light harvesting in plants as a response to changes in incident light intensity. By dissipating excess excitation energy of chlorophyll molecules as heat, NPQ balances the input and utilization of light energy in photosynthesis and protects the plant against photooxidative damage. To understand the physical mechanism of NPQ, we have performed femtosecond transient absorption experiments on intact thylakoid membranes isolated from spinach and transgenic Arabidopsis thaliana plants. These plants have well defined quenching capabilities and distinct contents of xanthophyll (Xan) cycle carotenoids. The kinetics probed in the spectral region of the S(1) --> S(n) transition of Xans (530-580 nm) were found to be significantly different under the quenched and unquenched conditions, corresponding to maximum and no NPQ, respectively. The lifetime and the spectral characteristics indicate that the kinetic difference originated from the involvement of the S(1) state of a specific Xan, zeaxanthin, in the quenched case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.