Abstract
Silicene, a sheet of silicon atoms in a honeycomb lattice, was proposed to be a new Dirac-type electron system similar to graphene. We performed scanning tunneling microscopy and spectroscopy studies on the atomic and electronic properties of silicene on Ag(111). An unexpected √3 × √3 reconstruction was found, which is explained by an extra-buckling model. Pronounced quasiparticle interferences (QPI) patterns, originating from both the intervalley and intravalley scatter, were observed. From the QPI patterns we derived a linear energy-momentum dispersion and a large Fermi velocity, which prove the existence of Dirac fermions in silicene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.