Abstract

We analyzed broadband and low-frequency events recorded on Mars and made the first detection of horizontally polarized shear wave reflections, which help constrain the crustal structure at NASA's InSight lander site. Coherent signals from five well-recorded marsquakes appear to be independent of the focal depth and are consistent with SH-wave reflections off the topmost crustal interface (8 ± 2 km). This phase confirms the existence of the ∼8 km interface in the crust and the large wave speed (or impedance) contrast across it. The range of acceptable parameters determined from the detected SH-wave reflections differs from the majority of the vertically polarized shear wave models resulting from a previous receiver function study, indicating that the velocity of the vertically polarized waves is larger than that of horizontally polarized waves. We propose that this inconsistency results from the presence of seismic anisotropy within the top crustal layer at the lander site. Modeling results show that dry- or liquid-filled cracks/fractures and igneous intrusions can reproduce the observed radial anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.