Abstract

Cloning and expression of voltage-activated potassium ion-channel complementary DNAs has confirmed that these channels are composed of four identical subunits, each containing a voltage sensor. It has been generally accepted that the voltage sensors must reach a permissive state through one or more conformational ('gating') transitions before the channel can open. To test whether each subunit gates independently, we have constructed cDNAs encoding four subunits on a single polypeptide chain, enabling us to specify the subunit stoichiometry. The gating of heterotetramers made up from combinations of subunits with different gating phenotypes strongly suggests that individual subunits gate cooperatively, rather than independently. Nonindependent subunit gating is consistent with measurements of the kinetics of K(+)-channel gating currents and in line with the widespread subunit cooperativity observed in other multisubunit proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.