Abstract

Elastic steel metamaterial plates can be used for noise- and vibration-reduction due to unique physical properties related to their vibration band gap. However, obtaining a complete low-frequency vibration band gap in a thick elastic steel metamaterial plate is difficult. In this paper, we simulate a complete low-frequency vibration band gap in a thick elastic steel metamaterial plate. The structure consists of periodic, double-sided, composite stepped resonators, which were deposited on a 2D locally resonant phononic crystal plate. The phononic crystal plate consists of an array of rubber fillers embedded in a thick steel plate. The dispersion relations, power-transmission spectra, and the displacement fields of the eigenmodes are calculated using the finite-element method. The results show that, for the proposed structure, the opening of the first complete vibration band gap is reduced by a factor of 9.5 compared to a conventional thick elastic steel metamaterial plate. This causes attenuation of low-frequency elastic waves. The formation mechanisms for the vibration band gap are also explored numerically. The results indicate that the formation mechanism for the new low-frequency vibration band gap can be attributed to coupling between a local resonance mode of the composite stepped resonators and the Lamb wave mode of the thick steel-plate. The location of the vibration band gap is determined by the resonator mode of the composite stepped resonators. The vibration band gap effects of the composite stepped resonators are also investigated in this paper. We find that the location of the complete vibration band gaps can be modulated with a relatively low frequency using different composite stepped resonators. Such an elastic steel metamaterial plate with a complete low-frequency vibration band gap can be used to reduce both vibration and noise in various commercial and research applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call