Abstract

Abstract Swope Supernova Survey 2017a (SSS17a) was discovered as the first optical counterpart to the gravitational wave event GW170817. Although its light curve on the timescale of weeks roughly matches the expected luminosity and red color of an r-process powered transient, the explanation for the blue emission from high velocity material over the first few days is not as clear. Here we show that the power-law evolution of the luminosity, temperature, and photospheric radius during these early times can be explained by cooling of shock-heated material around the neutron star merger. This heating is likely from the interaction of the gamma-ray burst jet with merger debris, the so-called cocoon emission. We summarize the properties of this emission and provide formulae that can be used to study future detections of shock cooling from merging neutron stars. This argues that optical transient surveys should search for such early, blue light if they wish to find off-axis gamma-ray bursts and double neutron star gravitational wave events as soon as possible after the merger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.