Abstract

AbstractMetal oxides (MOs) are used in photovoltaics and microelectronics as surface passivating layers and gate dielectrics, respectively. The effectiveness of MOs predominantly depends on their structure and the nature of the semiconductor/MO (S/MO) interface. While some efforts are made to analyze interface behavior of a few MOs, greater fundamental understanding on the interface and structural behaviors of emerging MOs is yet to be established for enhanced scientific and technological developments. Here, the structure of atomic layer deposited titanium oxide (TiOx) and the nature of the c‐Si/TiOx interface on the atomic‐ to nanoscale are probed. A new breed of mixed oxide (SiOx+TiOx) interfacial layer with a thickness of ≈1.3 nm at the c‐Si/TiOx interface is discovered, and its thickness further increases to ≈1.5 nm after postdeposition annealing. It is observed that both as‐deposited and annealed monolithic TiOx films comprise multiple bonding states at varying film thickness, with an oxygen‐deficient TiOx layer located close to the mixed oxide/TiOx interface. The stoichiometry of this layer improves when reaching the middle and near surface regions of the TiOx layer, respectively. This work uncovers several critical structural and interface aspects of TiOx, and thus creates opportunities to control and design improved photovoltaic and electronic devices for future development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.