Abstract
Toad ventricles were externally driven by periodic pulses while monophasic action potential (MAP) signals were recorded in seven excised and seven in situ ventricles. As the frequency was slowly increased in steps, the stimulated tissue displayed several dynamic characteristics. Hierarchies of periodic behavior, like phase-locking and period-doubling sequences leading to chaos, were observed. Results showed that subharmonic bifurcations (order one and two) and chaotic-like behavior may systematically occur in the MAP signal within a definite frequency interval in the 1:1 phase locking regime. The chaotic, or more cautiously expressed, chaotic-like behavior is characterized by the power spectrum, the autocorrelation function, the Poincaré map, and the reconstructed 2-D phase portrait. It is concluded that (a) bifurcations of order one and two and the characteristic irregular behavior are evidences of local universal chaotic dynamics in cardiac tissue; (b) there are no qualitative differences in the dynamics of the in situ and excised ventricles; and (c) fibrillation seems to be related to chaotic behavior, but whether they are similar or equivalent phenomena still remains to be seen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.