Abstract

To examine rat molar pulp innervation and identify complex cellular signalling systems involving nerve growth factor (NGF) and its p75 receptors (NGFR) at different stages of development, maturation and ageing. Decalcified mandibular first molar mesial cusps from Wistar rats of ages 0day; 1, 2, 3, 4, 6, 9, 12 and 24weeks (n=5 per group) were sectioned (10μm) and incubated with antibodies for NGF, NGFR, calcitonin gene-related peptide (CGRP) and neurofilament. Nerve densities in worn and intact regions of 3- to 24-week-old rats were compared by anova, Bonferroni and t-tests. During odontogenesis, differences in NGF and NGFR expression were observed, with no evidence of nerve fibres, suggesting a signalling mechanism controlling cellular differentiation and dentine formation. Tooth wear in 4-week rats was associated with reduced NGF expression and significantly decreased CGRP axons within affected odontoblast regions. The underlying subodontoblasts started expressing NGF which continued until 9weeks. This may promote a significant increase in CGRP nerve density in affected regions. Nerve density in intact odontoblast regions increased gradually and reached significant levels in 12-week rats. Reduction in nerve densities within worn and intact regions of cusps was observed at 24weeks. Age-related changes and responses to tooth wear may be controlled by the NGF signalling mechanism, with roles in odontoblast/subodontoblast communication and control of sensory innervation at different stages of tooth development, maturation and ageing. Greater understanding of cellular and nerve regulation in the injured pulp may promote therapeutic strategies for pulp survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call