Abstract

We have studied in living chick embryos the effects of an extracellular calcium load on the induction of apoptosis in spinal cord motoneurons. The action of a calcium ionophore, A23187, that does not raise extracellular calcium was also evaluated in order to explore the role of endogenous calcium in determining developmentally-regulated cell death of motoneurons. The application of a single dose of 50 μl of 1.8 M CaCl 2 onto the chorioallantoic membrane of E7 chick embryos produces a transient elevation of intraembryonic calcium concentration that was followed by a transitory rise in the number of apoptotic cells in the lateral motor column. Administration of 250 μM of the ionophore A23187 (100 μl), also results in an increase in apoptosis of motoneurons in the lateral motor column on E6 and E7 but this effect is progressively lost following treatment at more advanced stages of development. Neither of these effects can be explained by unspecific calcium cytotoxicity since they can be inhibited by prior administration of the protein synthesis inhibitor cycloheximide or the neuromuscular blocking agent (+)-tubocurarine. After calcium loading, degenerating cells display similar ultrastructural characteristics as during physiologically occurring motoneuron death and exhibit histochemically detectable DNA fragmentation. Chronic administration of CaCl 2 or A23187 does not reduce the total number of surviving motoneurons at the end of the normal period of naturally occurring motoneuron death (E10). It is suggested that calcium loading stimulates and accelerates the physiological degeneration of a restricted subpopulation of motoneurons which will undergo the process of natural cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call