Abstract

Phosphorylation of platelet myosin is thought to be required for activation of the contractile events occurring during platelet activation. At present the only known mechanism for Onitiating myosin phosphorylation is through a Ca2+-calmodulin-dependent activation of myosin light chain kinase. However, our previous studies using the fluorescent Ca2+-indicator quin2 indicated that both platelet shape change and myosin phosphorylation could be induced in an EGTA-containing media in the absence of a measurable change in cytosolic free Ca2+ concentration (Hallam, Daniel, Kendrick-Jones & Rink. Biochem. J. 232 (1985) 373). In order to confirm this finding, we fyave investigated the regulation of myosin phosphorylation usin^+a preparation of electrically-permeabilized platelets and Ca2+ buffers to control the internal Ca2+ concentration. Fifty percent myosin phosphorylation was obtained at 700 nM Ca2+. When thrombin (5 U/ml) was added to this system, this curve shifted both to the left and upward; 50% myosin phosphorylation was obtained at 400 nM Ca2+.A synthetic inhibitor of protein kinase C, H7, had no effect on myosin phosphorylation in the absence of agonist but did inhibit the thrombin-induced shift to left suggesting that protein kinase C may modulate myosin phosphorylation. We also compared the effects of H7 agonist-induced myosin phosphorylation and shape change in control and an quin2 loaded platelets. Comparable inhibition of both phosphorylation and the rate of shape change was observed with both quin2 and H7. Addition of H7 to quin2-loaded platelets resulted in complete inhibition of both agonist-induced shape change and myosin phosphorylation. These results indicate that both protein kinase C and Ca2+-dependent reactions are involved in complete expression of myosin phosphorylation in human platelets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call