Abstract

This study involved in vitro assays of peat soil to investigate the occurrence, importance and potential mechanism(s) of anaerobic methane oxidation (AOM) in several northern peatlands ranging from ombrotrophic bog to minerotrophic fen. Although strong evidence suggests that AOM is linked to sulfate reduction in marine sediments, very little is known about AOM in freshwater systems such as northern peatlands, which have large methane (CH 4 ) production and are a significant source of atmospheric CH 4 . Our results showed a mean net AOM rate of 17 ± 2.6 nmol kg − 1 s − 1 with a maximum rate of 176 nmol kg − 1 s − 1 for a minerotrophic fen in central New York. AOM was demonstrated with three independent methods to verify our results: (a) additions of methanogenic inhibitors, (b) stable isotope enrichment ( 13 C-CH 4 ), and (c) natural abundance stable isotope analysis ( 13 C-CH 4 ). These experiments confirmed that AOM occurs simultaneously with methanogenesis, consumes a significant portion of gross CH 4 production, and significantly fractionates C isotopes (∼ −127‰). Experiments using a variety of potential electron acceptors demonstrated that Fe(III) and SO4 2 − are not quantitatively important, while the role of NO 3 − is uncertain and deserves more attention. The exact mechanism(s) for AOM in peat soils remains unclear; however the AOM rates reported in this study are similar to those reported for CH 4 production and aerobic CH 4 oxidation in northern peatlands, suggesting that AOM may be an important control on CH 4 fluxes in northern peatland ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.