Abstract

A detailed petrochemical investigation of the peridotites from the Mt. Pollino area (Basilicata, Southern Italy) allowed to provide the first comprehensive reconstruction of the evolution and geodynamic setting of ophiolitic mantle from the Southern Apennines. These mantle peridotites firstly acquired strongly-refractory modal and chemical compositions consistent with large degrees of partial melting (≥23%). This process was presumably assisted by concomitant injection of melt increments rising from deeper levels of the mantle column, as suggested by relatively large Al and Fe contents of Ol, Opx and Sp. The porous flow ascent of melt increments produced by deeper near-fractional melting continued after the end of the partial melting, as recorded by precipitation of disseminated clinopyroxene out of thermal and chemical equilibrium with the other rock-forming minerals. The Pollino mantle sequence locally experienced reheating associated to a new episode of porous flow migration of melts with REE composition approaching that of N-MORB. The petrological evolution recorded by the peridotites of Mt. Pollino, their high equilibrium T (up to 1100°C) and the absence of pyroxenites show remarkable analogies with modern abyssal peridotites, pointing to an intra-oceanic setting of the Jurassic Ligurian Tethys for this mantle sequence. According to the present knowledge about the Southern Apennines, the abyssal-like peridotites with the associated terrigenous sediments and continental crustal rocks were incorporated in the Ligurian Accretionary Complex and reached HP/LT conditions during a subduction event starting in Upper Oligocene, to be later exhumed in the Tortonian. The results of this study strongly support the existence of significant differences in terms of geodynamic evolution between Southern and Northern Apennines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.