Abstract
Nonhomologous end-joining (NHEJ) is an important pathway for the repair of DNA double-strand breaks (DSBs) and plays a critical role in maintaining genomic stability in mammalian cells. While Ku70/80 (Ku) functions in NHEJ as part of the DNA-dependent protein kinase (DNA-PK), genetic evidence indicates that the role of Ku in NHEJ goes beyond its participation in DNA-PK. Inositol hexakisphosphate (IP6) was previously found to stimulate NHEJ in vitro and Ku was identified as an IP6-binding factor. Through mutational analysis, we identified a bipartite IP6-binding site in Ku and generated IP6-binding mutants that ranged from 1.22% to 58.48% of wild-type binding. Significantly, these Ku IP6-binding mutants were impaired for participation in NHEJ in vitro and we observed a positive correlation between IP6 binding and NHEJ. Ku IP6-binding mutants were separation-of-function mutants that bound DNA and activated DNA-PK as well as wild-type Ku. Our observations identify a hitherto undefined IP6-binding site in Ku and show that this interaction is important for DSB repair by NHEJ in vitro. Moreover, these data indicate that in addition to binding of exposed DNA termini and activation of DNA-PK, the Ku heterodimer plays a role in mammalian NHEJ that is regulated by binding of IP6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.