Abstract

Kinetic studies of the folding of carbonic anhydrase have indicated the occurrence of various conformational intermediates. Human carbonic anhydrase I contains a single cysteine residue, Cys-212, which in the native state is unavailable for alkylation. In the unfolded state, it can be specifically modified with iodoacetate. In this study the accessibility of Cys-212 in human carbonic anhydrase I to iodo[2-14C]acetate during the refolding process has been investigated. It is shown that Cys-212 is hidden to the alkylating agent as soon as the refolding is initiated. Since Cys-212 is located in the extensive beta-structure passing through the enzyme, it appears that the Cys-containing beta-strand is part of a rapidly formed nucleation center created during the folding process. This beta-strand (No. 7) together with its neighboring beta-strand (No. 6) constitute the most hydrophobic regions of the enzyme. Because hydrophobic contacts are considered to be important in predicting nucleation sites, these beta-strands probably partake in the formation of the nucleation center. These beta-strands are also partly involved in the bottom region of the active site cavity, indicating that this region is formed during the initial folding events. As a result of this study it was also observed that 2-mercaptoethanol is a potent inhibitor of the enzyme with a K1 = 26 microM at pH 8.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.