Abstract

The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical investigations, we provide evidence for the existence of an EI ground state in a van der Waals compound Ta2Pd3Te5. Density-functional-theory calculations suggest that it is a semimetal with a small band overlap, whereas various experiments exhibit an insulating ground state with a clear band gap. Upon incorporating electron-hole Coulomb interaction into our calculations, we obtain an EI phase where the electronic symmetry breaking opens a many-body gap. Angle-resolved photoemission spectroscopy measurements exhibit that the band gap is closed with a significant change in the dispersions as the number of thermally excited charge carriers becomes sufficiently large in both equilibrium and nonequilibrium states. Structural measurements reveal a slight breaking of crystal symmetry with exceptionally small lattice distortion in the insulating state, which cannot account for the significant gap opening. Therefore, we attribute the insulating ground state with a gap opening in Ta2Pd3Te5 to exciton condensation, where the coupling to the symmetry-breaking electronic state induces a subtle change in the crystal structure. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.