Abstract

The Friedmann–Lemaître–Robertson–Walker (FLRW) metric assumes comoving spatial rigidity of metrical properties. The curvature term in comoving coordinates is environment independent and cannot evolve. In the standard model, structure formation is interpreted accordingly: structures average out on the chosen metrical background, which remains rigid in comoving coordinates despite nonlinear structure growth. The latter claim needs to be tested, since it is a hypothesis that is not derived using general relativity. We introduce a test of the comoving rigidity assumption by measuring the two-point autocorrelation function on comoving scales – assuming FLRW comoving spatial rigidity – in order to detect shifts in the baryon acoustic oscillation (BAO) peak location for luminous red galaxy (LRG) pairs of the Sloan Digital Sky Survey Data Release 7. In tangential directions, subsets of pairs overlapping with superclusters or voids show the BAO peak. The tangential BAO peak location for overlap with Nadathur & Hotchkiss superclusters is 4.3 ± 1.6 h−1 Mpc less than that for LRG pairs unselected for supercluster overlap, and 6.6 ± 2.8 h−1 Mpc less than that of the complementary pairs. Liivamägi et al. superclusters give corresponding differences of 3.7 ± 2.9 h−1 Mpc and 6.3 ± 2.6 h−1 Mpc, respectively. We have found moderately significant evidence (Kolmogorov–Smirnov tests suggest very significant evidence) that the BAO peak location for supercluster-overlapping pairs is compressed by about 6 per cent compared to that of the complementary sample, providing a potential challenge to FLRW models and a benchmark for predictions from models based on an averaging approach that leaves the spatial metric a priori unspecified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.