Abstract
The recent demonstration of enhanced surface anion concentrations for aqueous electrolyte solutions strongly contrasts current textbook descriptions. Small cations are still expected to be repelled from the surface, but recent simulations predict that hydronium (H3O+) cations are instead preferentially adsorbed at the interface. Here we describe a comparative second harmonic generation (SHG) study of aqueous solutions of hydriodic acid (HI) and alkali iodides (NaI and KI), which establish lower limits of 55% and 34% larger surface iodide concentrations for HI solutions relative to NaI and KI solutions, respectively. This result implies that hydronium ions must exist in much higher densities near the liquid surface than do the alkali ions, in support of the theoretical predictions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.