Abstract

Stimulated platelets release the content of their granules to the environment by a process known as platelet secretion. The precise mechanism of platelet secretion is poorly understood. The most widely-held theory suggests that, during platelet activation, secretory granules centralize and their content is released into the surface-connected canalicular system. Using fixation techniques directed at preserving membrane structures, morphological evidence is provided that human platelet activation is associated with secretory granules migrating to the periphery of platelets, where they undergo transition to participate in the formation of membrane-associated multivesicular structures. These multivesicular structures then undergo dissolution resulting in granule content secretion to the environment. The formation of the membrane-associated multivesicular structures occurs in platelets in which some of the secretory granules have also become centralized. This suggests that during the activation of human platelets, membrane-associated multivesicular structure release may occur concurrently with other mechanisms of secretory granule content release. The present observations are consistent, however, with the hypothesis that during human platelet activation the formation of membrane-associated multivesicular structures by platelet secretory granules contributes importantly to the mechanism of platelet secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.