Abstract
In this short note, we present some evidence towards the existence of an algebra of BPS G2 instantons. These are instantonic configurations that govern the partition functions of 7d SYM theories on local G2 holonomy manifolds mathcal{X} . To shed light on such structure, we begin investigating the relation with parent 4d mathcal{N} = 1 theories obtained by geometric engineering M-theory on mathcal{X} . The main point of this paper is to substantiate the following dream: the holomorphic sector of such theories on multi-centered Taub-NUT spaces gives rise to an algebra whose characters organise the G2 instanton partition function. As a first step towards this program we argue by string duality that a multitude of geometries mathcal{X} exist that are dual to well-known 4d SCFTs arising from D3 branes probes of CY cones: all these models are amenable to an analysis along the lines suggested by Dijkgraaf, Gukov, Neitzke and Vafa in the context of topological M-theory. Moreover, we discuss an interesting relation to Costello’s twisted M-theory, which arises at local patches, and is a key ingredient in identifying the relevant algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.