Abstract

Monaurally measured temporal gap detection (TGD) thresholds characteristically increase as the frequency difference is increased over a range of about half an octave to an octave between two sinusoids that mark the onset and offset of the silent gap. For greater sinusoidal frequency separations, the TGD thresholds often become asymptotic. This pattern probably reflects two different processes. The first process likely reflects within-channel processing within a single auditory filter or channel. The second process is less certain, but may reflect between-channel processing of the silent gap stimulus across two or more independent frequency channels. To evaluate the hypothesis that asymptotic monaural gap detection can be explained by a simple between-channel process, TGD thresholds were measured as a function of frequency separation between a pregap sinusoid presented to the left ear (channel 1) and a postgap sinusoid, of higher frequency, presented to the right ear (channel 2). The rationale for dichotic presentation of the sinusoidal markers and gap signal followed from the fact that the gap detection task must be performed between two independent channels by combining the outputs from each channel (ear) and recovering the gap information centrally. The resulting TGD thresholds for pregap sinusoids from 250 to 4000 Hz were relatively invariant and increased only slightly with increasing marker frequency separation. The average TGD thresholds for four listeners were in the range of 30 to 40 ms, which corresponded closely with their asymptotic TGD thresholds for the same set of stimulus conditions measured monaurally. This correspondence of the two data sets supports an across-frequency, between-channel process for asymptotic monaural gap detection at marker frequency separations greater than about half an octave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.