Abstract

Amylose is known to form inclusion complexes in the presence of hydrophobic guests. Among lipids, only single-chain fatty acids have been reported as possible guests with the surrounding amylose in a well-defined V-helix conformation. Using experimental 13C solid-state NMR, we studied the formation of inclusion complexes between amylose and a variety of multiple-chains lipids of increasing complexity. Molecular dynamics simulations and calculations of 13C isotropic chemical shifts using the Density Functional Theory approach were performed to support the interpretation of experimental spectra. We provide unambiguous evidences that amylose forms inclusion complexes with lipids bearing multiple acyl chains. Amylose conformations around these lipids are characterized by {ϕ,ψ} anomeric bond dihedral angles near {115°,105°}. In the 13C NMR spectra, this translates into C1 and C4 chemical shifts of 102.5 ppm and 81.1 ppm, regardless of the helical conformation of the amylose surrounding the acyl chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call