Abstract

Tree diversity inventories were undertaken. The goal of this study was to understand changes in tree community dynamics that may result from common anthropogenic disturbances at the Reserva Los Cedros, a tropical montane cloud forest reserve in northern Andean Ecuador. The reserve shows extremely high alpha and beta tree diversity. We found that all primary forest sites, regardless of age of natural gaps, are quite ecologically resilient, appearing to return to a primary-forest-type community of trees following gap formation. In contrast, forests regenerating from anthropogenic disturbance appear to have multiple possible ecological states. Where anthropogenic disturbance was intense, novel tree communities appear to be assembling, with no indication of return to a primary forest state. Even in ancient primary forests, new forest types may be forming, as we found that seedling community composition did not resemble adult tree communities. We also suggest small watersheds as a useful basic spatial unit for understanding biodiversity patterns in the tropical Andes that confound more traditional Euclidean distance as a basic proxy of dissimilarity. Finally, we highlight the conservation value of Reserva Los Cedros, which has managed to reverse deforestation within its boundaries despite a general trend of extensive deforestation in the surrounding region, to protect a large, contiguous area of highly endangered Andean primary cloud forest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call