Abstract

We present the first J-band spectrum of Mrk 231, which reveals a large \ion{He}{1}*$\lambda 10830$ broad absorption line with a profile similar to that of the well-known \ion{Na}{1} broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by \citet{veilleux13} is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in SNe Ia. The nuclear starburst may be the origin and location of the dust. Spatially-resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the \ion{He}{1}* lines (produced in the quasar-photoionized \ion{H}{2} region) compared with the \ion{Na}{1} and \ion{Ca}{2} lines (produced in the corresponding partially-ionized zone). {\it Cloudy} simulations show that a density increase is required between the \ion{H}{2} and partially-ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies $\sim 100\rm \, pc$ from the central engine. These results suggest that the \ion{He}{1}* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the \ion{Ca}{2} and \ion{Na}{1} lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of \ion{Na}{1} absorption lines; without the compression along our line of sight, Mrk~231 would appear as an ordinary FeLoBAL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call