Abstract

Transport of the dipeptide glycylsarcosine (Gly-Sar) was examined in isolated proximal straight tubules of the rabbit kidney by an in vitro microperfusion technique to determine whether it can be actively transported intact. The unidirectional lumen-to-bath flux of Gly-Sar was measured by two separate methods, namely its appearance rate (JA) in the bathing fluid and its disappearance rate (JD) from the luminal fluid. In addition, the cell Gly-Sar concentration was measured immediately after the last flux period. Mean luminal fluid Gly-Sar concentration was 0.22 mM. Transepithelial Gly-Sar flux (260.0 fmol.min-1.mm-1) was greater than could be accounted for by passive leakage, whereas cellular Gly-Sar accumulation (2.72 mM) was greater than could be attributed to passive equilibration across the luminal membrane. High-pressure liquid chromatographic analysis of cellular extract indicated that 63% of the transported Gly-Sar was hydrolyzed within the cell. Analysis of the bath solution revealed that 47% of the radioactivity that crossed the tubule cell was in the form of intact dipeptide, whereas the remainder of the radioactivity was in the form of hydrolytic and metabolic products of Gly-Sar. This indicates that the dipeptide Gly-Sar is actively transported intact at the luminal membrane into the cytosol of proximal straight tubule cells with subsequent hydrolysis. It then exits across the basolateral membrane as intact Gly-Sar and its hydrolytic and metabolic products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.