Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse aspects of plant growth. However, their potential role in reproductive development remains elusive. Here, we discovered an unique role of SlMPK20, a plant-specific group D MAPK, in pollen development in tomato. RNAi-mediated suppression of SlMPK20 or its knockout using CRISPR/Cas9 significantly reduced or completely abolished pollen viability, respectively, with no effects on maternal fertility. Cell biology and gene expression analyses established that SlMPK20 exerts its role specifically at the uni-to-binucleate transition during microgametogenesis. This assertion is based on the findings that the transgenic pollen was largely arrested at the binucleate stage with the appearance of subcellular abnormality at the middle uninucleate microspore stage; and SlMPK20 mRNA and SlMPK20-GUS signals were localized in the tetrads, uninuclear microspores and binuclear pollen grains but not in microspore mother cells or mature pollen grains. Transcriptomic and proteomic analyses revealed that knockout of SlMPK20 significantly reduced the expression of a large number of genes controlling sugar and auxin metabolism and signaling in anthers. Finally, protein-protein interaction assays identified SlMYB32 as a putative target protein of SlMPK20. We conclude that SlMPK20 specifically regulates post-meiotic pollen development through modulating sugar and auxin metabolism and signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.