Abstract

Upon treatment with UV irradiation, native (supercoiled) PM2 DNA undergoes an increase in electrophoretic mobility relative to the nicked circular form in the presence of 1 M NaCl or 5 mM CaCl 2 or MgCl 2. This effect is dependent upon supercoiling in that the relative electrophoretic mobility decreases with decreasing superhelical density of the molecule. These findings indicate that supercoil-dependent aspects of the secondary and tertiary structure of nonirradiated PM2 DNA can be altered by a combination of UV irradiation and any of the ionic environments above. We show that the alteration is not the result of a conversion of Z-DNA segments to a right-handed helix or to a renaturation of denatured regions in PM2 DNA. Circular dichroism studies do not support a simple model in which A-form DNA induced by superhelical stress is converted to B-form DNA by UV-induced photodamage and salt. We, therefore, present three alternative explanations for these observations two of which invoke conformational transitions in secondary structure and a third which requires a change in tertiary structure due to an increase in flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call