Abstract
In the present study, we investigate the implication of the mitogen-activated protein kinases (MAPKs) Erk, p38, and JNK in mediating the effect of fetal calf serum (FCS) on the differentiation of MC3T3-E1 osteoblast-like cells. Erk is stimulated by FCS in proliferating, early-differentiating, as well as in mature cells. Activation of p38 by FCS is not detected in proliferating cells but is observed as the cells differentiate. JNK is activated in response to FCS throughout the entire differentiation process, but a maximal stimulation is observed in early differentiating cells. The roles of Erk and p38 pathways in mediating MC3T3-E1 cell differentiation was determined using specific inhibitors such as U0126 and SB203580, respectively. These experiments confirmed that the Erk pathway is essential for mediating cell proliferation in response to FCS, but indicated that this MAP kinase has little effect in regulating the differentiation of MC3T3-E1 cells. In contrast, p38 only marginally influenced proliferation, but appeared to be critical for the control of alkaline phosphatase (ALP) expression in differentiating cells. Finally, results obtained with high doses of SB203580, which also affected JNK activity, suggest that p38 and/or JNK are probably also involved in the control of type 1 collagen and osteocalcin expression in differentiating cells. The data indicate that MAPKs regulate different stages of MC3T3-E1 cell development in response to FCS. Distinct MAPK pathways seem to independently modulate osteoblastic cell proliferation and differentiation, with Erk playing an essential role in cell replication, whereas p38 is involved in the regulation of ALP expression during osteoblastic cell differentiation. JNK is also probably involved in the regulation of osteoblastic cell differentiation, but its precise role requires further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.