Abstract
Diacylglycerol (DAG) is a central mediator of signaling pathways that regulate cell proliferation, survival and apoptosis. Therefore, C1 domain, the DAG binding site within protein kinase C (PKC) and other DAG effector proteins, is considered a potential cancer drug target. Derivatives of 5-(hydroxymethyl)isophthalic acid are a novel group of C1 domain ligands with antiproliferative and differentiation-inducing effects. Our previous work showed that these isophthalate derivatives exhibit antiproliferative and elongation-inducing effects in HeLa human cervical cancer cells. In this study we further characterized the effects of bis(3-trifluoromethylbenzyl) 5-(hydroxymethyl)isophthalate (HMI-1a3) on HeLa cell proliferation and morphology. HMI-1a3-induced cell elongation was accompanied with loss of focal adhesions and actin stress fibers, and exposure to HMI-1a3 induced a prominent relocation of cofilin-1 into the nucleus regardless of cell phenotype. The antiproliferative and morphological responses to HMI-1a3 were not modified by pharmacological inhibition or activation of PKC, or by RNAi knock-down of specific PKC isoforms, suggesting that the effects of HMI-1a3 were not mediated by PKC. Genome-wide gene expression microarray and gene set enrichment analysis suggested that, among others, HMI-1a3 induces changes in small GTPase-mediated signaling pathways. Our experiments revealed that the isophthalates bind also to the C1 domains of β2-chimaerin, protein kinase D (PKD) and myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), which are potential mediators of small GTPase signaling and cytoskeletal reorganization. Pharmacological inhibition of MRCK, but not that of PKD attenuated HMI-1a3-induced cell elongation, suggesting that MRCK participates in mediating the effects of HMI-1a3 on HeLa cell morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.