Abstract

To define the role of free radicals and of lipid peroxide involvement during the progress of cerulein-induced acute pancreatitis in mice, we evaluated the effect of a novel free radical scavenger, 2-octadecylascorbic acid (CV-3611), on pancreatic edema formation, and the levels of serum enzymes (amylase, lipase) and of lipid peroxide in pancreatic tissue. Mice were divided into three groups: control group, intraperitoneal injection of saline only; pancreatitis group, cerulein 50 micrograms/kg injected intraperitoneally six times at 1-hr intervals; treatment groups, CV-3611 10 mg/kg subcutaneously just after intraperitoneal cerulein injection. After the cerulein injection, the degree of pancreatic edema formation, serum amylase and lipase levels, and the amount of lipid peroxide in pancreatic tissue increased significantly during the observation period of 12 hr. Treatment with CV-3611 resulted in significant reduction in pancreatic edema formation at 3.5 hr (P less than 0.05) and 9 hr (P less than 0.05), serum amylase and lipase levels at 3.5 hr (P less than 0.05) and 12 hr (P less than 0.05), and lipid peroxide levels at 3.5 hr (P less than 0.05), 6 hr (P less than 0.05) and 12 hr (P less than 0.05). These results indicate that a novel free radical scavenger, CV-3611, has a strong therapeutic effect during the development of acute pancreatitis and suggest that oxygen-derived free radicals play an important role in the pathogenesis of acute pancreatitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.