Abstract

Renal perfusion was increased in anesthetized rabbits and dogs by using an extracorporeal circuit. When left kidney perfusion pressure was raised in rabbits (145-240 mm Hg), arterial pressure fell by 1.34 +/- 0.20 mm Hg/min. Pretreatment of the rabbits with 2-bromoethylamine hydrobromide, which destroyed the renal medulla, abolished the fall in arterial pressure (-0.08 +/- 0.08 mm Hg/min) in response to increased renal perfusion pressure. In dogs (with blockade of autonomic ganglia by pentolinium, converting enzyme inhibition [captopril/enalaprilat], and surgical renal denervation), increasing renal perfusion pressure to 170-220 mm Hg resulted in a fall in arterial pressure by 0.32 +/- 0.03 mm Hg/min (or by 28.9 +/- 3.1 mm Hg over a 90-minute period). Mean arterial pressure did not change significantly in identically prepared dogs not subjected to increased renal perfusion pressure, whereas pretreatment of dogs with bromoethylamine abolished the hypotensive response to increased renal perfusion pressure. Thus, the hypotensive response to increased renal perfusion was dependent on the presence of an intact renal medulla, but hypotension still occurred in the presence of converting enzyme inhibition, autonomic ganglion blockade, and renal denervation. The results provide in vivo evidence in two species that a vasodepressor factor from the renal medulla is released in response to increased renal perfusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.