Abstract

Melatonin has been proposed to exert some regulatory actions within the pineal gland itself. The present study examined the effect of melatonin on the release of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) from rat pineal glands by using an in vitro perifusion system. Melatonin induced a concentration-dependent stimulatory effect on 5-HT secretion from 10(-6) M to 10(-3) M. Maximal effects were obtained with melatonin 10(-3) M and concentrations lower than 10(-6) M were without effect. The secretion of 5-HIAA was inhibited by melatonin 10(-3) and 10(-4) M, but it was increased when pineals were incubated with 10(-5) and 10(-6) M of melatonin. The indoleamine secretion was also studied on peripherally denervated rat pineal glands. Basal output of 5-HT from these glands was increased when compared with those from control rats. In contrast, the secretion of 5-HIAA was strongly reduced after removal of the sympathetic input to the pineal gland. Melatonin 10(-3) M failed to stimulate 5-HT release from denervated pineal glands, although it inhibited 5-HIAA secretion. In contrast, melatonin 10(-5) M enhanced 5-HT release without altering 5-HIAA output. Fluoxetine, a 5-HT uptake inhibitor, produced similar effects than mM concentrations of melatonin on the indoleamine secretion from control pineal glands, but it had no effect on glands taken from peripherally denervated rats. These data suggest that mM concentrations of the pineal hormone are able to stimulate 5-HT release from the pinealocyte, while mM concentrations of melatonin increase extracellular 5-HT by inhibiting its reuptake in the adrenergic nerve endings. These findings are discussed in relation to the possible role of melatonin regulating the intra- and extracellular availability of 5-HT in the pineal gland and its significance as an autocrine factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call