Abstract

Clostridium perfringens epsilon toxin (ETX) rapidly kills MDCK II cells at 37°C, but not 4°C. The current study shows that, in MDCK II cells, ETX binds and forms an oligomeric complex equally well at 37°C and 4°C but only forms a pore at 37°C. However, the complex formed in MDCK cells treated with ETX at 4°C has the potential to form an active pore, since shifting those cells to 37°C results in rapid cytotoxicity. Those results suggested that the block in pore formation at 4°C involves temperature-related trapping of ETX in a prepore intermediate on the MDCK II cell plasma membrane surface. Evidence supporting this hypothesis was obtained when the ETX complex in MDCK II cells was shown to be more susceptible to pronase degradation when formed at 4°C vs. 37°C; this result is consistent with ETX complex formed at 4°C remaining present in an exposed prepore on the membrane surface, while the ETX prepore complex formed at 37°C is unaccessible to pronase because it has inserted into the plasma membrane to form an active pore. In addition, the ETX complex rapidly dissociated from MDCK II cells at 4°C, but not 37°C; this result is consistent with the ETX complex being resistant to dissociation at 37°C because it has inserted into membranes, while the ETX prepore readily dissociates from cells at 4°C because it remains on the membrane surface. These results support the identification of a prepore stage in ETX action and suggest a revised model for ETX cytotoxicity, i) ETX binds to an unidentified receptor, ii) ETX oligomerizes into a prepore on the membrane surface, and iii) the prepore inserts into membranes, in a temperature-sensitive manner, to form an active pore.

Highlights

  • Clostridium perfringens epsilon toxin (ETX) is the third most potent of all clostridial toxins [1,2,3,4], earning it a listing as a CDC class B select toxin

  • It was previously reported that both native ETX and an ETXgreen fluorescent protein (GFP) fusion protein are cytotoxic for Madin–Darby Canine Kidney (MDCK) II cells at 37uC, but not at 4uC [2,11]

  • The current study first confirmed those conclusions by treating MDCK II cells with ETX for 60 min

Read more

Summary

Introduction

Clostridium perfringens epsilon toxin (ETX) is the third most potent of all clostridial toxins [1,2,3,4], earning it a listing as a CDC class B select toxin. ETX is only produced by type B and D isolates of C. perfringens, which cause fatal enterotoxemias in several livestock species [3,4]. Those type B and D enterotoxemias develop when ETX is produced in the intestines and absorbed into the circulation, allowing the toxin to target internal organs outside of the gastrointestinal tract. ETX is produced during vegetative growth, rather than by sporulating cells. It is secreted, initially as a binding capable (but inactive) prototoxin of 311 amino acids (32.7 kDa) [8]. Activation of the toxin in vivo is probably mediated mainly by the intestinal proteases present in the gastrointestinal tract

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call