Abstract

Recent observations1,2 of high-redshift supernovae seem to suggest that the global geometry of the Universe may be affected by a ‘cosmological constant’, which acts to accelerate the expansion rate with time. But these data by themselves still permit an open universe of low mass density and no cosmological constant. Here we derive an independent constraint on the lower bound to the mass density, based on deviations of galaxy velocities from a smooth universal expansion3,4,5,6,7. This constraint rules out a low-density open universe with a vanishing cosmological constant, and together the two favour a nearly flat universe in which the contributions from mass density and the cosmological constant are comparable. This type of universe, however, seems to require a degree of fine tuning of the initial conditions that is in apparent conflict with ‘common wisdom’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call