Abstract
Strong coupling of excitonic resonances with a cavity gives rise to exciton–polaritons which possess a modified energy landscape compared to the uncoupled emitter. However, due to the femtosecond lifetime of the so-called bright polariton states and transient changes of the cavity reflectivity under excitation, it is challenging to directly measure the polariton excited state dynamics. Here, near-infrared pump–probe spectroscopy is used to investigate the ultrafast dynamics of exciton–polaritons based on strongly coupled (6,5) single-walled carbon nanotubes in metal-clad microcavities. We present a protocol for fitting the reflectivity-associated response of the cavity using genetic algorithm-assisted transfer-matrix simulations. With this approach, we are able to identify an absorptive exciton–polariton feature in the transient transmission data. This feature appears instantaneously under resonant excitation of the upper polariton but is delayed for off-resonant excitation. The observed transition energy and detuning dependence point toward a direct upper polariton-to-biexciton transition. Our results provide direct evidence for exciton–polariton intrinsic transitions beyond the bright polariton lifetime in strongly coupled microcavities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.