Abstract

The molecular beam electric resonance technique has been used to examine the hyperfine spectrum of LiI7 to determine the nuclear hexadecapole interaction of the iodine nucleus. The nuclear magnetic octupole interaction was also considered but found to be marginally significant. A total of 172 transitions in vibrational states 0-3 and rotational states 1-6 have been included in a fit to determine the iodine nuclear quadrupole, spin-rotation, and hexadecapole interactions, the lithium quadrupole and spin-rotation interactions, and the tensor and scalar parts of the spin-spin interaction. Vibration and rotation dependencies of these constants have been determined. The results include: eHh=−0.0151(30), eQIqI=−194351.212(17)−8279.521(46)(v+1/2)+100.616(34)(v+1/2)2−0.3949(73)(v+1/2)3−6.41977(50)J(J+1)+0.10593(33)(v+1/2)J(J+1),eQLiqLi=172.613(52)−3.26(14)(v+1/2)+0.00145(87)J(J+1),cI=6.80260(32)+0.00303(49)(v+1/2)−0.000118(13)J(J+1), cLi=0.75872(72)−0.0088(11)(v+1/2), c3=0.62834(68)−0.0050(11)(v+1/2), c4=0.06223(36)+0.00041(26)(v+1/2), and eΩIωI′=0.000112(73), all in kHz with one standard deviation uncertainties for the last 2 digits in ( ).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call