Abstract

Hedgehog (HH) is a major secreted morphogen involved in development, stem cell maintenance and oncogenesis [1, 2]. In Drosophila wing imaginal discs, HH produced in the posterior compartment diffuses into the anterior compartment to control target gene transcription via the transcription factor Cubitus interruptus (CI). The first steps in the reception and transduction of the HH signal are mediated by its receptor Patched (PTC) [3] and the seven-transmembrane-domain protein Smoothened (SMO) [4, 5]. PTC and HH control SMO by regulating its stability, trafficking, and phosphorylation (for review, see [6]). SMO interacts directly with the Ser-Thr protein kinase Fused (FU) and the kinesin-related protein Costal2 (COS2), which interact with each other and with CI in an intracellular Hedgehog transducing complex [7-9]. We show here that HH induces FU targeting to the plasma membrane in a SMO-dependent fashion and that, reciprocally, FU controls SMO stability and phosphorylation. FU anchorage to the membrane is sufficient to make it a potent SMO-dependent, PTC-resistant activator of the pathway. These findings reveal a novel positive-feedback loop in HH transduction and are consistent with a model in which FU and SMO, by mutually enhancing each other's activities, sustain high levels of signaling and render the pathway robust to PTC level fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.