Abstract

We study the new binary intermetallic superconductor MgB(2) using high-resolution photoemission spectroscopy. The superconducting-state spectrum measured at 5.4 K shows a coherent peak with a shoulder structure, in sharp contrast to that expected from a simple isotropic-gap opening. The spectrum can be well reproduced using the weighted sum of two Dynes functions with the gap sizes of 1.7 and 5.6 meV. Temperature-dependent study shows that both gaps close at the bulk transition temperature. These results provide spectroscopic evidence for a multiple gap of MgB(2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.