Abstract

Klong Thap Lamu, a large mangrove-fringed tidal channel along the northern Andaman Coast of Thailand, provides an ideal location to test the hypothesis that a paleotsunami record can be preserved in the sediments of a mangrove forest. The 2004 Indian Ocean tsunami destroyed local swaths of mangrove forest with highly variable widths — up to 300 m. Left in the wake of the tsunami is a thin mantling of laterally discontinuous sand, macerated shells, and localized coral rubble that is being mixed rapidly into the underlying mangrove peat. Transects across the channel's tsunami-modified shore show that the sand layer thins abruptly at the border of the undisturbed mangroves, suggesting that the energy of the wave dissipated quickly as it entered the forest. The distribution and sedimentology of the 2004 tsunami deposit (Unit tI) suggest that any paleotsunami deposit within this mangrove environment should be spatially restricted and thoroughly bioturbated. Sediment cores collected from within the 2004 tsunami zone penetrate a buried coral-shell peat unit (Unit tIII) that tapers inland. Unit tIII is strikingly similar to Unit tI, except for Unit tIII's diffuse sedimentology, which we attribute to extensive bioturbation. Unit tIII also cross-cuts an identified facies boundary that is traceable across the width of the 2004 tsunami zone. Rather than a facies boundary associated with the regional early-to-late Holocene sea level regression, stratigraphic correlations suggest that Unit tIII represents an event horizon (i.e. tsunami). AMS 14C dates on material from within Unit tIII combined with an upper bracketing age suggest that the tsunami event occurred sometime between 2720 and 4290 cy BP. If correct, this tsunami predates the 3–4 tsunami events recognized to the north at Koh Phra Thong. Unit tIII is, however, a potential far-field equivalent of a recently recognized paleotsunami deposit on the southwestern Indian coast ca. 3,710 years before present ( Nair et al., 2010).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.