Abstract
Transport properties play a major role in the characterization of correlated metals such as the cuprates. The usual dc and optical conductivity measurements, however, suffer from the missing momentum resolution in the strongly anisotropic CuO2 plane. The problem can be partially solved by using electronic Raman scattering. Here, the response is proportional to the conductivity. Additionally, different parts of the Fermi surface can be projected out by using polarized light. With this technique we study the electron dynamics in the normal state of cuprates over a wide range of doping. The strong anisotropy of the electron relaxation which evolves below a doping level of 0.22 holes/CuO2 is interpreted in terms of an unconventional metal-insulator-transition with an anisotropic gap. A phenomenology is developed which allows a quantitative understanding of the Raman results and provides a scenario which links single- and many-particle properties.KeywordsRelaxation RateFermi SurfaceDoping LevelQuantum Phase TransitionOptimal DopingThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.