Abstract

Extracts from three human cell lines were found to contain abridged Menkes disease gene transcripts with novel insertion sequences. The transcript variant that is the focus of the present study codes for a 103-residue protein containing the first heavy-metal-binding domain (Hmb1) of ATP7A, the Cu-ATPase associated with Menkes disease. This transcript variant has a 45-bp nucleotide insert interposed between exons 1 and 2 of ATP7A that starts with a 5´ ATG that is in-frame with the downstream ATG translation start site of ATP7A. We report here that the 66-bp nucleotides positioned between the upstream and downstream ATG sites encode 22 amino acid residues whose primary structure in part meets the criteria for a nuclear-localization sequence (NLS). We have referred to the transcript as nuclear Menkes-like (NML) 45. A green fluorescent protein (GFP) construct with NML45 when transfected in Chinese hamster ovary cells localized to the cell nucleus. A similar construct without the 66-bp segment exhibited a random dispersed fluorescent pattern in the cytosol. GFP constructs encoding ATP7A exons likewise failed to direct GFP into the cell nucleus, suggesting the nuclear determinant is not in an internal domain of the protein. The data suggest that the 22-residue segment contains an NLS for an 11.2-kDa protein with one Cu-binding site that may function as a chaperone to transport Cu into the nucleus of mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.