Abstract
The aggregation of the alpha/beta protein acylphosphatase from Sulfolobus solfataricus has been studied under conditions in which the protein maintains a native-like, although destabilised, conformation and that therefore bear resemblance to a physiological medium. Static and dynamic light-scattering measurements indicate that under these conditions the protein aggregates rapidly, within two minutes. The initial aggregates are enzymatically active and have a secondary structure that is not yet characterized by the high content of cross-beta structure typical of amyloid, as inferred from Fourier transform infra-red and circular dichroism measurements. These species then convert slowly into enzymatically inactive aggregates that bind thioflavin T and Congo red, characteristic of amyloid structures, and contain extensive beta-sheet structure. Transmission electron microscopy reveals the presence in the latter aggregates of spherical species and thin, elongated protofibrils, both with diameters of 3-5 nm. Kinetic tests reveal that this process occurs without the need for dissolution and re-nucleation of the aggregates. Formation of thioflavin T-binding and beta-structured aggregates is substantially more rapid than unfolding of the native state, indicating that the initial aggregation process promotes formation of amyloid structures. Taken together, these findings suggest a mechanism of amyloid formation that may have physiological relevance and in which the amyloid structures result from reorganisation of the molecular interactions within the initially formed non-amyloid aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.