Abstract

The mechanical response of brittle rock to long-duration compression loading is of particular concern in underground disposal of nuclear waste, where radionuclides must be isolated from the biosphere for periods of the order of a million years. Does the strength decrease without limit over such time, or is there, for some rock types, a lower “threshold” strength below which the rock will cease to deform? This paper examines the possibility of such a threshold in silicate crystalline rocks from several perspectives, including: (1) interpretation of the results of short-term creep tests on rock; (2) numerical analysis of the effect of decrease in fracture toughness due to stress corrosion on the strength of a crystalline rock; and (3) evidence from plate tectonics, and observations of in situ rock stress in granite quarries. The study concludes that there isclear evidence of threshold strength. The threshold is of the order of 40% of the unconfined compressive strength or higher for laboratory specimens under unconfined compressive loading, and increases rapidly in absolute value with confinement. Field evidence also leads to the conclusion that the long-term strength of crystalline rock in situ is of comparable magnitude to the laboratory value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.